

INTRODUCTION TO CHEMISTRY

ATOMIC HYPOTHESIS:

Keeping in view various laws of chemical combination, a theoretical proof for the validity of different laws was given by John Dalton in the form of hypothesis called Dalton's atomic hypothesis. Postulates of Dalton's hypothesis are as follows:

- (i) Each element is composed of extremely small particles called atoms which can take part in chemical combination.
- (ii) All atoms of a given element are identical i.e., atoms of a particular element are all alike but differ from atoms of other elements.
- (iii) Atoms of different elements possess different properties (including different masses).
- (iv) Atoms are indestructible i.e., atoms are neither created nor destroyed in chemical reactions.
- (v) Atoms of elements combine to form molecules and compounds are formed when atoms of more than one element combine.
- (vi) In a given compound, the relative number and kind of atoms is constant.

Modern atomic hypothesis:

The main modifications made in Dalton's hypothesis as a result of new discoveries about atoms are:

- (i) Atom is no longer considered to be indivisible.
- (ii) Atoms of the same element may have different atomic weights. E.g. isotopes of oxygen O¹⁶, O¹⁷ and O¹⁸.
- (iii) Atoms of different element may have same atomic weights. E.g. isobars Ca⁴⁰ and Ar⁴⁰.
- (iv) Atom is no longer indestructible. In many nuclear reactions, a certain mass of the nucleus is converted into energy along with α , β and γ rays.
- (v) Atoms may not always combine in simple whole number ratios. E.g. in sucrose (C₁₂H₂₂O₁₁), the elements carbon, hydrogen and oxygen are present in the ratio of 12:22:11 and the ratio is not a simple whole number ratio.

Atomic & Molecular masses:

(a) Atomic mass: It is the average relative mass of atom of element as compared with $\frac{1}{12}$ times the mass of an atom of carbon-12 isotope.

Atomic mass =
$$\frac{\text{Average mass of an atom}}{1/12 \times \text{Mass of an atom of C}^{12}}$$

(b) Average atomic mass: If an element exists in two isotopes having atomic masses 'a' and 'b' in the ratio m: n, then average atomic mass = $\frac{(m \times a) + (n \times b)}{m+n}$. Atomic mass is expressed in amu. 1 amu = 1.66×10^{-24} g. One atomic mass unit (amu) is equal to $\frac{1}{12}$ th of the mass of an atom of carbon-12 isotope.

Gram atomic mass (GAM):

Atomic mass of an element expressed in grams is called Gram atomic mass or gram atom or mole atom.

- (i) Number of gram atoms = $\frac{\text{Mass of an element}}{\text{GAM}}$
- (ii) Mass of an element in g = No. of gram atoms \times GAM
- (iii) Number of atoms in 1 GAM = 6.02×10^{23}

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

 $\textbf{Website}: www.resonance.ac.in \mid \textbf{E-mail}: contact@resonance.ac.in$

Number of atoms in a given substance = No. of gram atoms \times 6.02 \times 10²³ = $\frac{\text{Mass}}{\text{GAM}} \times$ 6.02 \times 10²³

(iv) Number of atoms in 1 g of element =
$$\frac{6.02 \times 10^{23}}{\text{GAM}}$$

(v) Mass of one atom of the element (in g) =
$$\frac{\text{GAM}}{6.02 \times 10^{23}}$$

Molecular mass:

Molecular mass of a molecule, of an element or a compound may be defined as a number which indicates how many times heavier is a molecule of that element or compound as compared with $\frac{1}{12}$ of the mass of an atom of carbon-12. Molecular mass is also expressed in amu.

Molecular mass =
$$\frac{\text{Mass of one molecule of the substance}}{1/12 \times \text{Mass of one atom of C-12}}$$

Actual mass of one molecule = Mol. mass (in amu) \times 1.66 \times 10⁻²⁴ g

Molecular mass of a substance is the additive property and can be calculated by adding the atomic masses of atoms present in one molecule.

Gram molecular mass (GMM):

Molecular mass of an element or compound when expressed in g is called its gram molecular mass, gram molecule or mole molecule.

Number of gram molecules =
$$\frac{\text{Mass of substance}}{\text{GMM}}$$

Mass of substance in g = No. of gram molecules \times GMM

Average atomic mass and molecular mass

$$\overline{A}$$
 (Average atomic mass) = $\frac{\sum A_i X_i}{\sum X_{total}}$

(Average molecular mass) =
$$\frac{\sum M_i X_i}{\sum X_{total}}$$

Where A_1 , A_2 , A_3 are atomic mass of species 1, 2, 3,... etc. with % as X_1 , X_2 , X_3 etc. Similar terms are for molecular masses.

THE MOLE CONCEPT

One mole of any substance contains a fixed number (6.022×10^{23}) of any type of particles (atoms or molecules or ions) and has a mass equal to the atomic or molecular weight, in grams. Thus it is correct to refer to a mole of helium, a mole of electrons or a mole of any ion, meaning respectively Avogadro's number of atoms, electrons or ions.

Number of moles =
$$\frac{\text{Weight (grams)}}{\text{Weight of one mole (g/mole)}} = \frac{\text{Weight}}{\text{GAM or GMM}}$$

Note: 1 mole = 1 g-atom = 1 g-molecule = 1 g-ion.

Properties of Gases

The state of matter in which the molecular forces of attraction between the particles of matter are minimum, is known as gaseous state. It is the simplest state and shows great uniformity in behaviour.

Characteristics of gases

- (1) Gases or their mixtures are homogeneous in composition.
- (2) Gases have very low density due to negligible intermolecular forces.
- (3) Gases have infinite expansibility and high compressibility.

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

- (4) Gases exert pressure.
- (5) Gases possess high diffusibility.
- (6) Gases do not have definite shape and volume like liquids.
- (7) Gaseous molecules move very rapidly in all directions in a random manner i.e., gases have highest kinetic energy.
- (8) Gaseous molecules collide with one another and also with the walls of container.
- (9) Gases can be liquefied, if subjected to low temperatures & high pressures.
- (10) Thermal energy of gases >> molecular attraction.
- (11)Gases undergo similar change with the change of temperature and pressure. In other words, gases obey certain laws known as gas laws.

Measurable properties of gases

The characteristics of gases are described fully in terms of four parameters or measurable properties:

- (i) The volume, V, of the gas.
- (ii) Its pressure, P
- (iii) Its temperature, T
- (iv) The amount of the gas (i.e., mass or number of moles).
- (1) Volume:
- (i) Since gases occupy the entire space available to them, the measurement of volume of a gas only requires a measurement of the container confining the gas.
- (ii) Volume is expressed in litres (L), millilitres (mL) or cubic centimetres (cm³), cubic metres (m³).
- (iii) 1 L = 1000 mL; $1 \text{ mL} = 10^{-3} \text{ L}$; $1 L = 1 \text{ dm}^3 = 10^{-3} \text{ m}^3$
- $1 \text{ m}^3 = 10^3 \text{ dm}^3 = 10^6 \text{ cm}^3 = 10^6 \text{ mL} = 10^3 \text{ L}$
- (2) Mass:
 - (i) The mass of a gas can be determined by weighing the container in which the gas is enclosed and again weighing the container after removing the gas. The difference between the two weights gives the mass of the gas.
 - (ii) The mass of the gas is related to the number of moles of the gas i.e.

moles of gas (n) =
$$\frac{\text{Mass in grams}}{\text{Molar mass}} = \frac{\text{m}}{\text{M}}$$

- (3) Temperature:
 - (i) Gases expand on increasing the temperature. If temperature is increased twice, the square of the velocity (v^2) also increases two times.
 - (ii) Temperature is measured in centigrade degree (°C) or celsius degree with the help of thermometers. Temperature is also measured in Fahrenheit (°F).
 - (iii) S.I. unit of temperature is kelvin (K) or absolute degree.

$$K = {}^{\circ}C + 273$$

(iv) Relation between °F and °C is
$$\frac{^{\circ}C}{5} = \frac{^{\circ}F - 32}{9}$$

(4) Pressure:

- (i) Pressure of the gas is the force exerted by the gas per unit area of the walls of the container in all directions. Thus, Pressure (P) = $\frac{\text{Force}(F)}{\text{Area}(A)} = \frac{\text{Mass}(m) \times \text{Acceleration}(a)}{\text{Area}(A)}$
- (ii) Pressure exerted by a gas is due to kinetic energy $(KE = \frac{1}{2}mv^2)$ of the molecules. Kinetic energy of the gas molecules increases, as the temperature is increased.
- (iii) Pressure of a gas is measured by manometer or barometer.
- (iv) Commonly two types of manometers are used:
- (a) Open end manometer
- (b) Closed end manometer

Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

(v) The S.I. unit of pressure, the pascal (Pa), is defined as 1 newton per metre square. It is very small unit.

 $1Pa = 1 Nm^{-2} = 1 kgm^{-1}s^{-2}$

(vi) C.G.S. unit of pressure is dynes cm⁻².

(vii) M.K.S. unit of pressure is Newton m⁻². The unit Newton m⁻² is sometimes called pascal (Pa).

(viii) Higher unit of pressure is bar, kPa or MPa.

1 bar = $10^5 \text{ Pa} = 10^5 \text{ Nm}^{-2} = 100 \text{ KNm}^{-2} = 100 \text{ KPa}$

(ix) Several other units used for pressure are,

Name	Symbol	Value
bar	bar	1 bar = 10 ⁵ Pa
atmosphere	atm	1 atm = $1.01325 \times 10^5 \text{ Pa}$
Torr	Torr	1 Torr = $\frac{101325}{760}$ Pa = 133.322 Pa
millimetre of mercury	mm <i>Hg</i>	1 mm Hg = 133.322 Pa

Ideal Gas Equation

PV = nRT

where, P: Pressure of gas; V: Volume of gas; n = Number of moles of gas

T: Temperature of gas ; R: Universal gas constant.

Values of R: 0.082 LatmK⁻¹mol⁻¹; 8.314 JK⁻¹mol⁻¹; 1.987 CalK⁻¹mol⁻¹

Prefixes used in the SI System

Multiple	Prefix	Symbol
10 ⁻²⁴	yocto	У
10 ⁻²¹	zepto	Z
10 ⁻¹⁸	atto	а
10 ⁻¹⁵	femto	f
10 ⁻¹²	pico	р
10 ⁻⁹	nano	n
10 ⁻⁶	micro	μ
10 ⁻³	milli	m
10 ⁻²	centi	С
10 ⁻¹	deci	d
10	deca	da
10 ²	hecto	h
10 ³	kilo	k
10 ⁶	mega	M
10 ⁹	giga	G
10 ¹²	tera	Т
10 ¹⁵	peta	Р
10 ¹⁸	exa	Е
10 ²¹	zeta	Z
10 ²⁴	yotta	Υ

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Date : Time : 10 Min

DDT-01
DAILY DIAGNOSTIC TEST

- 1. Which of the following is not a postulate of Dalton's atomic theory?
 - (A) All the atoms of a given element are identical in all respect i.e. mass, shape, size etc.
 - (B) Matter is made up of very small indivisible particles called atom.
 - (C) Atoms of different element can have same atomic mass.
 - (D) Atoms cannot be created or destroyed by any chemical process or physical process.
- 2. 1 amu is equal to:

(A) $1.66 \times 10^{-24} \text{ kg}$

(B) $\frac{1}{8}$ times the mass of one $\frac{16}{8}$ O -atom

(C) $\frac{1}{2}$ times the mass of one ${}_{1}^{1}$ H-atom

(D) $\frac{1}{12}$ times the mass of one ${}^{12}_{6}$ C -atom

3. Which of the following parameter/s is/are unitless?

(A) RAM

(B) GAM

(C) Molar mass

(D) GMM

4. Mass of 3 atoms of element X is 51 u. Its GAM is:

(A) 51 u

(B) 17 g

(C) 17 u

(D) 51 g

5. How many nucleons are present in 2 atoms of an element which has atomic mass 2u?

(A) 2

(B) 1

(C) 4

(D) 3

6. The ratio of mass of a molecule of X_2 to that of silver atom is 8 : 27. If the molar mass of Ag is 108 g, identify the element X.

(A) ¹⁴C

(B) 15N

(C) 16O

(D) 14N

7. The mass of 10 molecules of H_2SO_4 is :

(A) 980 amu

(B) 980 g

(C) $980 \times 1.66 \times 10^{-27} \text{ kg}$

(D) Both (A) and (C)

8. Which of the following is correct

(A) GMM = molecular mass in gram

(B) 1 mole = N_A molecules = 6.023×10^{23} molecules

(C) $GAM = mass of N_A atoms$

(D) all of these

9. What is mass (approx) in gram of an atom with atomic mass 200 amu.

(A) 200 g

(B) 3.32×10^{-22} g

(C) 3.32×10^{-25} g

(D) 0.005 g

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

 $\textbf{Website:} www.resonance.ac.in \mid \textbf{E-mail:} contact@resonance.ac.in$

Date : Time : 10 Min

DDT-02
DAILY DIAGNOSTIC TEST

1. Total magnitude of charge of 1 mole electron will be approximately:

(A) 19300 C

(B) 18500 C

(C) 96500 C

(D) 9000 C

2. How many moles of atoms are there in one atom

(A) 1

(B) 6.023×10^{23}

(C) 1.66×10^{-24}

(D) 22.4

3. Number of sulphur atoms present in 0.1 mole S₈:

(A) 6.023×10^{23}

(B) 6.023×10^{24}

(C) 48.18×10^{23}

(D) 48.18×10^{22}

4. The total number of protons in 63 mg HNO₃ is:

(A) 6.02×10^{20}

(B) 1.92×10^{22}

 $(C) 10^{-3}$

(D) 1

5. Select incorrect matching

(A) $3N_A$ atoms of Ne = 60 g

(B) 4 g-atoms of S = 128 g

(C) $6N_A$ molecules of $O_3 = 288$ g

(D) 2 mole H₂ molecules = 2 g

6. Which sample contains the largest number of atoms

(A) 1 mg CH₄

(B) 1 mg N₂

(C) 1 mg Na

(D) 1 mg water

7. The least number of molecules are contained in

(A) 2 g Hydogen

(B) 8 g oxygen

(C) 4 g Nitrogen

(D) 16 g CO₂

8. 1 mole of C₂H₆ contains

(A) N_A molecular of C₂H₆

(B) 24 g of carbon

(C) 3.6×10^{24} H-atoms

(D) 18 protons

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Date : Time : 10 Min

1.	Total number	of electrons	in 6.2 mg	NO ₃ - will be:
----	--------------	--------------	-----------	----------------------------

(A) $16 \times 10^{-4} \text{ N}_{A}$

(B) $32 \times 10^{-4} \text{ N}_{A}$

(C) $48 \times 10^{-4} \text{ N}_{A}$

(D) $80 \times 10^{-4} \text{ N}_{A}$

2. A sample of D_2 has same mass as that of 10^6 molecules of H_2 . The number of molecules of D_2 in the sample is:

 $(A) 10^6$

(B) 5×10^6

(C) 5×10^5

(D) 10^{-6}

3. Find the average molar mass of a mixture of gases containing 48 g O₂ and 0.5 mole H₂.

(A) 49 g

(B) 24.5 g

(C) 22.5 g

(D) 45 g

4. A sample contains 20% by mole of ¹⁷O and remaining ¹⁶O. The average atomic mass of this sample is :

(A) 16.2

(B) 16.8

(C) 16.4

(D) none of these

5. The largest numbers of molecules are in

(A) 54 g N₂O₅

(B) 28 g CO

(C) 36 g H₂O

(D) 46 g C₂H₅OH

6. The number of grams of H₂SO₄ in 0.25 mole of it, will be

(A) 0.245

(B) 2.45

(C) 24.5

(D) 49.0

7. The number of atoms in 22 g of carbon dioxide is:

(A) $3 \times 6.02 \times 10^{23}$

(B) $4.5 \times 6.02 \times 10^{23}$

(C) $1.5 \times 6.02 \times 10^{23}$

(D) $2.5 \times 6.02 \times 10^{23}$

Date :

Time: 10 Min

DDT-04
DAILY DIAGNOSTIC TEST

1. The temperature at which the volume of ideal gas is zero, is

(A) 0 °C

(B) 0 K

(C) 0 °F

(D) All of these

2. For an ideal gas, the temperature of one mole per litre is given by

(A) 273 K

(B) 273°C

(C) 298K

(D) none of these

3. The volume occupied by 8.8 g CO₂ at 31 °C and 1 atm pressure is

(A) 5 ml

(B) 0.2 L

(C) 5 L

(D) 2 L

4. The temperature of 4.0 moles of an ideal gas occupying 5 L at 3.32 bar will be

(A) 50 K

(B) 0.50 K

(C) $5 \times 10^2 \text{ K}$

(D) 25 K

5. The pressure of a mixture 4 g of O₂ and 2 g H₂ confined in a bulb of 1 litre at 0°C is

(A) 25.215 atm

(B) 31.205 atm

(C) 45.215 atm

(D) 15.210 atm

6. Fixed amount of an ideal gas will have maximun volume when

(A) P = 0.5 atm, T = 600 K

(B) P = 2 atm, T = 150 K

(C) P = 1 atm, T = 300 K

(D) P = 1 atm, T = 500 K

7. 112 cm³ of hydrogen gas at STP contains

(A) 0.01 mole

(B) 0.5 mole

(C) 0.005 mole

(D) 0.02 mole

8. 2.8 g of a gas at STP occupies a volume of 2.24 L, the gas can be

(A) O₂

(B) CO

(C) NO₂

(D) CO₂

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in
Toll Free: 1800 258 5555 | CIN: U80302RJ2007PLC024029

ANSWER KEY

DDT - 01

(C) 1.

2. (D)

(A) 3.

4. (B) 5. (C)

(C) 6.

(D) 7.

8. (D) 9. (B)

DDT - 02

1. (C) 2. (C) 3. (D) 4. (B) 5. (D)

6. (A) **7**. (C) 8.

(ABC)

DDT - 03

1. (B) 2. (C)

7.

3. (B)

4. (A) 5. (C)

(C) 6.

(C)

DDT - 04

2. (D)

(C) 3.

(A)

5. (A)

1. (B) 6. (A)

7. (C)

(B) 8.

Work Sheet - 01

Topic: Introduction to chemistry

S.No.	Sample	Gram Atomic mass of sample	Moles of sample	No. of atoms of sample	Mass removed from the sample	Mole removed	Atoms removed	Mass of same no. of C atom as no. of atoms present in the original sample
1.	8 g O				2 g			
	For Example	16 g	$\frac{1}{2}$ Mole	$\frac{N_A}{2}$	2 g	$\frac{1}{8}$ Mole	N _A 8	6 g
2.	230 g Na				46 g			
3.	60 g Ca					1 Mole		
4.	20 g He					3 Mole		
5.	56 g N					$\frac{1}{2}$ Mole		
6.	12 g Mg						<u>N_A</u> 4	
7.	128 g S						N _A	
8.	93 g P						3N _A 2	

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Physical Chemistry Work Sheet - 02

Topic: Introduction to chemistry

Fill in the blanks (where N_A is Avogadro number):

S.No.	Mass of sample	Gram molecular mass of sample	Moles of sample	No. of molecules present in the sample	Moles of H- atoms in the sample	No. of C-atoms in the sample	Mass of oxygen in the sample	Total no. of atoms present in the sample
1.	60 g HCHO							
	For Example	30 g	2 mole	2 N _A	4	2 N _A	32 g	8 N _A
2.			0.5 mole CH₃OH					
3.				3 N _A HCOOH				
4.	8.8 g CH₃CHO							
5.			5 mole C ₂ H ₅ OH					
6.				0.25 N _A CH₃COOH				
7.			0.4 mole C ₆ H ₁₂ O ₆					
8.				0.06 NA C12H22O11				

Reg. & Corp. Office:	CG Tower, A-46 & 52	, IPIA, Near City Mall	I, Jhalawar Road, Kota (Raj.) - 324005
----------------------	---------------------	------------------------	--

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Physical Chemistry Work Sheet - 03

Topic: Introduction to chemistry

Fill in the blanks (where N_A is Avogadro number):

S.No.	Gas	Pressure	Volume	Moles of gas in sample	Temperature	Mass of sample	No. of molecules present in the sample		Total no. of atoms present in the sample
1.	NH ₃	1 atm	22.4 L		546 K				
2.	CH₄		2.46 L	2 mol	300 K				
3.	O ₃	76 torr	4.48 L		1092 K				
4.	N ₂	1.013 ×10 ⁶ pa	0.821 L					0.1 N _A	
5.	CO ₂	380 cm of Hg	16.42 L			88 g			
6.	SO ₂		100 L		100/0.821 K				0.9 N _A

Reg. & Corp.	Office: CG Tower	A-46 & 52 IPIA	Near City Mall	Jhalawar Road	Kota (Rai) - 324005
incg. a corp.	Office. OO TOWER	, // +0 tx 52, 11 1/	i, incai Oily iviali	, orialawai itoau,	ι τοια (ττα)	., 527000

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

ANSWER KEY

WORK SHEET - 01

क्र.सं.	नमूना	नमूने का ग्राम परमाण्वीय द्रव्यमान	नमूने के मोल	नमूने में उपस्थित परमाणुओं की संख्या	नमूने से हटाया गया द्रव्यमान	नमूने से हटाये गये मोल	नमूने से हटाये गये परमाणु	मूल नमूने में उपस्थित परमाणु संख्या के समान, C-परमाणु की संख्या का द्रव्यमान
1.	8 g O				2 g			
	उदाहरण के लिए	16 g	$\frac{1}{2}$ Mole	$\frac{N_A}{2}$	2 g	$\frac{1}{8}$ Mole	N _A 8	6 g
2.	230 g Na	23 g	10 mole	10 N _A	46 g	2 mole	2 N _A	120 g
3.	60 g Ca	40 g	3/2 mole	3/2 N _A	40 g	1 Mole	NA	18 g
4.	20 g He	4 g	5 mole	5 NA	12 g	3 Mole	3 N _A	60 g
5.	56 g N	14 g	4 mole	4 N _A	1/2 mole	$\frac{1}{2}$ Mole	$\frac{N_A}{2}$	48 g
6.	12 g Mg	24 g	1/2 mole	$\frac{N_A}{2}$	6 g	1/4 mole	$\frac{N_A}{4}$	6 g
7.	128 g S	32 g	4 mole	4 N _A	32 g	1 mole	N _A	48 g
8.	93 g P	31 g	3 mole	3 N _A	46.5 g	3/2 mole	$\frac{3N_A}{2}$	36 g

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

WORK SHEET - 02

क्र.सं.	नमूने का द्रव्यमान	नमूने का ग्राम आण्विक द्रव्यमान	नमूने के मोल	नमूने में उपस्थित अणुओं की संख्या	नमूने में H परमाणु के मोल	नमूने में C परमाणु की संख्या	नमूने में ऑक्सीजन का द्रव्यमान	नमूने में उपस्थित परमाणुओं की कुल संख्या
1.	60 g HCHO							
	उदाहरण के लिए	30 g	2 mole	2 N _A	4	2 N _A	32 g	8 N _A
2.	16 g	32 g	0.5 mole CH₃OH	0.5 N _A	2	0.5 N A	8 g	3 N _A
3.	138 g	46 g	3 mole	3 N _A HCOOH	6	3 N A	96 g	15 Na
4.	8.8 g CH₃CHO	44 g	0.2 mole	0.2 N _A	0.8	0.4 N _A	3.2 g	1.4 N _A
5.	230 g	46 g	5 mole C₂H₅OH	5 NA	30	10 N _A	80 g	45 Na
6.	15 g	60 g	0.25 mole	0.25 N _A CH₃COOH	1	0.5 N _A	8 g	2 N _A
7.	72 g	180 g	0.4 mole C ₆ H ₁₂ O ₆	0.4 N _A	4.8	2.4 N _A	38.4 g	9.6 N _A
8.	20.52 g	342 g	0.06 mole	0.06 Na C12H22O11	1.32	0.72 N _A	10.56 g	2.7 N _A

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

WORK SHEET - 03

क्र.स.	गैस	दाब	आयतन	नमूने मे गैस के मोल	तापमान	नमूने का द्रव्यमान	नमूने में उपस्थित अणुओं की संख्या	नमूने में उपस्थित कुल परमाणुओं की संख्या
1.	NH ₃	1 atm	22.4 L	0.5 mol	546 K	8.5 g	0.5 N _A	2 N _A
2.	CH ₄	20 atm	2.46 L	2 mol	300 K	32 g	2 N _A	10 N _A
3.	O ₃	76 torr	4.48 L	0.005 mol	1092 K	0.24 g	0.005 Na	0.015 N A
4.	N ₂	1.013 × 10 ⁶ pa	0.821 L	0.1 mol	1000 K	2.8 g	0.1 N _A	0.2 N _A
5.	CO ₂	380 cm of Hg	16.42 L	2 mol	500 K	88 g	2 Na	6 N A
6.	SO ₂	0.03 atm	100 L	0.3 mol	100/0.821 K	19.2 g	0.3 Na	0.9 N _A

Re	g. & Corp.	. Office : CG	Tower, A-46	8 & 52, IPIA	, Near City N	Mall, Jhalawar	Road, Kota ((Raj.) - 324005
----	------------	----------------------	-------------	--------------	---------------	----------------	--------------	-------	------------

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Toll Free: 1800 258 5555 | **CIN:** U80302RJ2007PLC024029

Page No. - 11

Exercise

Marked questions are recommended for Revision.

PART - I: SUBJECTIVE QUESTIONS

- 1. How much time (in years) would it take to distribute one Avogadro number of wheat grains if 10¹⁰ grains are distributed each second?
- 2. The weight of one atom of Uranium is 238 amu. Its actual weight is g.
- 3. Calculate the weight of 12.044×10^{23} atoms of carbon.
- **4.** How many grams of silicon is present in 35 gram atoms of silicon (Given at. wt. of Si = 28).
- **5.** Find the total number of nucleons present in 12 g of ¹²C atoms.
- **6.** Find (i) the total number of neutrons, and (ii) the total mass of neutrons in 7 mg of ¹⁴C. (Assume that the mass of a neutron = mass of a hydrogen atom)
- 7.a Calculate the number of electrons, protons and neutrons in 1 mole of ¹⁶O⁻² ions.
- 8. How many atoms are there in 100 amu of He?
- **9.** The density of liquid mercury is 13.6 g/cm³. How many moles of mercury are there in 1 litre of the metal? (Atomic mass of Hg = 200.)
- 10. Calculate the atomic mass (average) of chlorine using the following data:

	% Natural Abundance	Molar Mass
35CI	75	35.0 g
³⁷ Cl	25	37.0 g

- 11. Average atomic mass of Magnesium is 24.31 amu. This magnesium is composed of 79 mole % of ²⁴Mg and remaining 21 mole % of ²⁵Mg and ²⁶Mg. Calculate mole % of ²⁶Mg.
- 12. The number of molecules in 16 g of methane is:
- **13.** Calculate the number of molecules in a drop of water weighing 0.09 g.
- 14. A sample of ethane has the same mass as 10.0 million molecules of methane. How many C_2H_6 molecules does the sample contain?
- **15.** The number of neutrons in 5 g of D_2O (D is ${}_1^2H$) are :
- **16.** Calculate the weight of 6.022×10^{23} formula units of CaCO₃.
- 17. From 200 mg of CO₂, 10²¹ molecules are removed. How many moles of CO₂ are left?
- 18. Find the total number of H, S and 'O' atoms in the following:
 - (a) $196 \text{ g H}_2\text{SO}_4$ (b) $196 \text{ amu H}_2\text{SO}_4$ (c) $5 \text{ mole H}_2\text{S}_2\text{O}_8$ (d) $3 \text{ molecules H}_2\text{S}_2\text{O}_6$.
- 19. If from 10 moles NH₃ and 5 moles of H₂SO₄, all the H-atoms are removed in order to form H₂ gas, then find the number of H₂ molecules formed.
- 20. № If from 3 moles MgSO₄.7H₂O, all the 'O' atoms are taken out and converted into ozone find the number of O₃ molecules formed.

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Introduction to Chemistry

21. If the components of air are N₂ - 78%; O₂ - 21%; Ar - 0.9% and CO₂ - 0.1% by volume (or mole), what would be the molecular weight of air?

22.3 Find the expression of Universal Gas Constant R in SI system in terms of the given properties of oxygen gas.

Pressure = p(kPa)

Volume = V (mL)

Temperature = t (°C)

Mass of oxygen = w(g)

23. The volume of a gas at 0°C and 700 mm pressure is 760 cc. The number of molecules present in this volume is:

24. The weight of 350 mL of a diatomic gas at 0°C and 2 atm pressure is 1 g. The weight of one atom is:

Oxygen is present in a 1-litre flask at a pressure of 7.6 × 10⁻¹⁰ mm of Hg at 0°C. Calculate the number 25. 🖎 of oxygen molecules in the flask.

Fill in the blanks: 26.

(i) $1\mu m = nm$

(ii) $10 \text{ MJ} = \dots \text{ J}$

(iii) 100 Pa = kPa

(iv) 1dm =mm

(v) $10 \text{ pm} = \dots \text{ cm}$

PART - II: OBJECTIVE QUESTIONS

Single Correct Questions (SCQ)

1. Which is not a basic postulate of Dalton's atomic theory?

(A) Atoms are neither created nor destroyed in a chemical reaction.

(B) Different elements have different types of atoms.

(C) Atoms of an element may be different due to presence of isotopes.

(D) Each element is composed of extermely small particles called atoms.

The modern atomic weight scale is based on: 2.

(A) 12C

(B) ¹⁶O

(C) ¹H

(D) ¹⁸O

3.3 1 amu is equal to

(A) $\frac{1}{12}$ of C-12 (B) $\frac{1}{14}$ of O-16 (C) 1 g of H₂

(D) $1.66 \times 10^{-23} \text{ kg}$

If the atomic mass of sodium is 23, the number of moles in 46 g of sodium is : 4.

(A) 1

(B) 2

(C) 2.3

(D) 4.6

5. How many grams are contained in 1 gram-atom of Na?

(A) 13 g

(B) 23 g

(C) 1 g

(D) $\frac{1}{23}$ g

1.0 g of hydrogen contains 6×10^{23} atoms. The atomic weight of helium is 4. It follows that the number 6. of atoms in 1 g of He is:

(A) $\frac{1}{4} \times 6 \times 10^{23}$

(B) $4 \times 6 \times 10^{23}$

(C) 6×10^{23}

(D) 12×10^{23}

The atomic weights of two elements A and B are 40u and 80u respectively. If x g of A contains y atoms, 7.3 how many atoms are present in 2x g of B?

(A) $\frac{y}{2}$

(B) $\frac{y}{4}$

(C) y

(D) 2y

八	Resonance ducating for better tomorrow	Website: www.resonance.ac. Toll Free: 1800 258 5555 Cl	in E-mail : contact@resonance.ad				
	7	Reg. & Corp. Office: CG Tow	er, A-46 & 52, IPIA, Near City Mall	, Jhalawar Road, Kota (Raj.)-324005			
21.১೩	The weight of a molecule (A) 1.09×10^{-21} g	e of the compound $C_{60}H$ (B) 1.24 × 10 ⁻²¹ g	l ₂₂ is : (C) 5.025 × 10 ⁻²³ g	(D) 16.023 × 10 ⁻²³ g			
20.	Which one of the following pairs of gases contains the same number of molecules : (A) 16 g of O_2 and 14 g of N_2 (B) 8 g of O_2 and 22 g of CO_2 (C) 28 g of N_2 and 22 g of CO_2 (D) 32 g of O_2 and 32 g of N_2						
19.	The number of mole of a (A) 0.425	ammonia in 4.25 g of am (B) 0.25	nmonia is : (C) 0.236	(D) 0.2125			
18.	The number of molecule (A) 6.0×10^{23}	es of CO ₂ present in 44 $(B) 3 \times 10^{23}$	g of CO_2 is : (C) 12×10^{23}	(D) 3×10 ¹⁰			
17.3	isotopic weight 115 and for the other isotope?	•		the predominant one form has otopic weights is the most likely (D) 114			
16.	equal to: (X20 has 99 pe		opic mixture of X atoms (C) 22.00	(X ²⁰ , X ²¹ , X ²²) is approximately (D) 20.00			
15.	number of C-14 isotope			espectively. What would be the (D) 6.02×10 ²³			
	(A) same	(B) 114.28 % less	(C) 14.28 % more	(D) 28.56 % less			
14.		whereas that of protor		e mass of neutron is assumed to se of its original value, then the			
	(A) $\frac{1}{27}$ N _A e coulomb	(B) $\frac{1}{3} \times N_A e$ coulomb	(C) $\frac{1}{9} \times N_A e$ coulomb	(D) 3 × N _A e coulomb			
13.১೩	The charge on 1 gram io						
12.	element X has mass, 2 t			ement Y. One average atom of atomic weight of Y? (D) 40.0			
11.	The total number of proton (A) 1.084×10^{25}	cons, electrons and neut (B) 6.022×10^{23}	rons in 12 g of $_{6}^{12}$ C is: (C) 6.022×10 ²²	(D) 18			
	(C) 10 mL of water		(D) 3.011×10^{23} atoms	of oxygen			
	(A) 1 g-atom of C		(B) $\frac{1}{2}$ mole of CH ₄				
10.	Which of the following ha	as the Maximum mass ?	?				
9.29.	The number of atoms in (A) Twice that in 60 g ca (C) Half in 8 g He	• ,	5.85) is : (B) 6.022 × 10 ²² (D) 558.5 × 6.023 × 10 ²	23			
0.	atoms? (At. wt. Al = 27,	_	(C) 48 g	(D) 96 g.			

22.	Number of electrons in (A) 6.02×10^{23}	1.8 mL of $H_2O(\ell)$ is about (B) 3.011 x 10^{23}	ut : (C) 0.6022 × 10 ²¹	(D) 60.22×10^{20}				
23.	One mole of P ₄ molecule (A) 1 molecule	lles contain :	(B) 4 molecules					
	(C) $\frac{1}{4} \times 6.022 \times 10^{23}$ a	itoms	(D) 24.088×10^{23} atom	S				
24.🔈	A sample of ammonium atoms in the sample is		contains 3.18 mole of H atoms. The number of mole of C					
. -	(A) 0.265	(B) 0.795	(C) 1.06	(D) 3.18				
25.	Torr is unit of : (A) Temperature	(B) Pressure	(C) Volume	(D) Density				
26.	The atmospheric press (A) 0.63	ure on Mars is 0.61 kPa. (B) 4.6	What is the pressure in (C) 6.3	mm Hg ? (D) 3.2				
27.	-	theit scales are related as $(B) \frac{C}{9} = \frac{F - 32}{5}$		(D) None of these				
28.	At what temperature, be (A) 100°	oth Celsius and Fahrenh (B) 130º	eit scale read the same (C) 60°	value : (D) –40°				
29.	The value of universal gas constant R depends on : (A) temperature of gas (B) volume of gas (C) number of moles of gas (D) units of volume and pressure							
30.	The value of gas consta (A) 1 cal	ant in calorie per degree (B) 2 cal	e temperature per mol is approximately: (C) 3 cal (D) 4 cal					
31.	The value of R in SI un (A) 8.314×10^{-7} erg K ⁻¹ (C) 0.082 litre atm K ⁻¹ r	¹ mol ^{–1}	(B) 8.314 JK ⁻¹ mol ⁻¹ (D) 2 cal K ⁻¹ mol ⁻¹					
32.	The pressure of sodium container? (A) 9.7×10^7	m vapour in a 1.0 L con (B) 7.5 × 10 ¹⁹	tainer is 9.5 torr at 927° (C) 4.2×10^{17}	C. How many atoms are in the (D) 9.7×10^{19}				
33.	• •	having 2 mole in 44.8 litro (B) 2 atm	,	(D) 4 atm				
34.≿	According to the ideal (A) 22.4 litre	gas laws, the molar volun (B) RT / P	ne of a gas is given by : (C) 8RT / PV	(D) RT / PV				
35.	Equal volumes of oxygen gas and a second gas weigh 1.00 and 19/8 grams respectively under the same experimental conditions. Which of the following is the unknown gas? (A) NO (B) SO ₂ (C) CS ₂ (D) CO							
36.≽⊾	A high altitude balloon	contains 6.0 g of helium	m in 10^4 L at 240 K. Assuming ideal gas behaviour, how to increase the pressure to 4.0×10^{-3} atm? (C) 1.5 (D) 2.0					
37.≿⊾		e separately filled with the otal number of atoms of t	•	D ₃ at the same temperature and ifferent flask would be : (D) 3 · 2 · 2 · 1				

Introduction to Chemistry

38. Under the same conditions, two gases have the same number of molecules. They must (A) be noble gases (B) have equal volumes (C) have a volume of 22.4 dm³ each (D) have an equal number of atoms 39. 16 g of an ideal gas SO_x occupies 5.6 L. at STP. The value of x is (A) x = 3(B) x = 2(C) x = 4(D) none of these The ratio of the weight of one litre of a gas to the weight of 1.0 L oxygen gas both measured at S.T.P. is 40. 2.22. The molecular weight of the gas would be : (A) 14.002 (B) 35.52 (C) 71.04 (D) 55.56 41. Avogadro number is: (A) Number of atoms in one gram of the element (B) Number of mililitre which one mole of a gaseous substance occupies at NTP (1 atm & 0°C) (C) Number of molecules present in one gram molecular mass of a substance. (D) All are correct 42. The weight of 1×10^{22} molecules of CuSO_{4.5}H₂O is : (A) 41.59 g (B) 415.9 q (C) 4.159 g (D) None of these How many moles of electron weigh one kilogram : 43.5 (B) $\frac{1}{9.108} \times 10^{31}$ (C) $\frac{6.023}{9.108} \times 10^{54}$ (D) $\frac{1}{9.108 \times 6.023} \times 10^{8}$ (A) 6.023×10^{23} Number of atoms in 560 g of Fe (atomic mass 56 gmol⁻¹) is: 44. (A) Twice that in 70 g N (B) Half that in 20 g H (C) Both (A) and (B) (D) None of these 45. Which has maximum number of atoms: (C) 27 g of Al (27) (A) 24 g of C (12) (B) 56 g of Fe (56) (D) 108 g Ag (108) 46.3 If we consider that 1/6, in place of 1/12 mass of carbon atom is taken to be the relative atomic mass unit, the mass of one mole of a substance will: (A) decrease twice (B) increase two fold (C) remain unchanged (D) be a function of the molecular mass of the substance How many moles of magnesium phosphate, Mg₃(PO₄)₂ will contain 0.25 mole of oxygen atoms? 47. (A) 0.02(B) 3.125×10^{-2} (C) 1.25×10^{-2} (D) 2.5×10^{-2} Given that the abundances of isotopes ⁵⁴Fe, ⁵⁶Fe and ⁵⁷Fe are 5%, 90% and 5% respectively, the 48. 🖎 atomic mass of Fe is: (A) 55.85 (B) 55.95 (C) 55.75 (D) 56.05 Multiple Correct Questions (MCQ) Which property of an element may have non-integral value. 49. (A) Atomic weight (B) Atomic number (C) Atomic volume (D) None of these 50. Which of the following would contain 1 mole of particles: (A) 0.5 mole of H₂ (B) 1 g of H-atoms (C) 16 g of O-18 (D) 16 g of methane 51. Which of the following will have the same number of electrons: (A) 1 g Hydrogen (B) 2 g Oxygen (C) 2 g Carbon (D) 2 g Nitrogen Which the following is equal to 10⁻² atm: 52. 🖎 (A) 0.76 cm of Hg (B) 7.6 torr (C) 0.076 dm of Hg (D) 0.0076 torr

53. Pressure exerted by a sample of oxygen is same for the following conditions :

(A) 2 L, 27°C

(B) 1 L, 150 K

(C) 4 L, 54°C

(D) 10 L, 1227°C

Assertion / Reasoning (A/R)

Each question has 5 choices (A), (B), (C), (D) and (E) out of which ONLY ONE is correct.

- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is not correct explanation for statement-1.
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.
- (E) Both statements are false.
- **54. Statement-1**: Gram molecular weight of O₂ is 32 g.

Statement-2: Relative atomic weight of oxygen is 32.

55. Statement-1: 1 mole of all ideal gases exert same pressure in same volume at same temperature.

Statement-2: Behaviour of ideal gases is independent of their nature.

Statement-1: Value of the universal gas constant depends upon the choice of sytem of units.

Statement-2: Values of universal gas constant are 8.314 J/molK, 0.0821 L.atm/molK, 2 cal/molK.

Comprehension

A vessel of 25 L contains 20 g of ideal gas X at 300K. The pressure exerted by the gas is 1 atm. 20 g of ideal gas Y is added to the vessel keeping the same temperature. Total pressure became 3 atm. Upon further addition of 20 g ideal gas Z the pressure became 7 atm. Answer the following questions. (Hint: Ideal gas equation is applicable on mixture of ideal gases) [Take, R = 1/12 L.atm / mol K]

57. Find the molar mass of gas X.

(A) 20 g

(B) 10 g

(C) 30 g

(D) 5 g

- **58.** Identify the correct statement(s):
 - I. Gas Y is lighter than gas X.
 - II. Gas Z is lighter than gas Y

(A) I only

(B) II only

(C) Both I and II

(D) None of the statements

59. Find the average molar mass of the mixture of gases X, Y and Z.

(A) 40/7

(B) 50/7

(C) 20

(D) 60/7

60. Match the column:

	Column-I				Column-II		
(Atomic mass (M))					(9/ composition of booying instance)		
	Isotope-I	Isotope-II	Average		(% composition of heavier isotope)		
(A)	(z – 1)	(z + 3)	Z	(p)	25% by moles		
(B)	(z + 1)	(z + 3)	(z + 2)	(q)	50% by moles		
(C)	z	3z	2z	(r)	% by mass dependent on z		
(D)	(z – 1)	(z + 1)	z	(s)	75% by mass		

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Toll Free: 1800 258 5555 | CIN: U80302RJ2007PLC024029

ITC - 11

Answers

PART - I

- 1. 1.9×10^6 years (approx.)
- 2. 3.95×10^{-22}
- 3. 24 g

980 g of Si 4.

- 5. $12 \times 6.022 \times 10^{23}$
- 24.088×10^{20} , 0.004 g. 6.
- $10 \times 6.022 \times 10^{23}$, $8 \times 6.022 \times 10^{23}$, $8 \times 6.022 \times 10^{23}$. 7.
- 25

9. 68 mole 10. 35.5 11. 10

 6.02×10^{23} 12.

 3.01×10^{21} molecules of H₂O 13.

14. 5.33×10^{6}

- 15. 2.5 N_A
- 16. 100 g

- 17. 0.00288
- 18. (a) $H = 4N_A$, $S = 2N_A$, $O = 8N_A$ atoms
- (b) H = 4 atoms, S = 2 atoms, O = 8 atoms.
- (c) $H = 10N_A$, $S = 10N_A$, $O = 40 N_A$ atoms
- (d) H = 6 atoms, S = 6 atoms, O = 18 atoms.

19. 20 N_A

- 11 N_A
- 28.964 u

- $R = \frac{52r}{1000 \times w \times (t + 273)}$ 22.
- 23. 1.88×10^{22}
- 24. 16 amu

- 25. 2.647×10^{10}
- 26. (i) 1000
- (ii) 10^7
- (iii) 0.1
- (iv) 100
- $(v) 10^{-9}$

PART - II

- 1. (C)
- 2. (A)
- 3.
- (B)

(A)

(B)

(B)

(C)

5. (B)

- 6. (A)
- 7. (C)
- 8. (C)
- 9.

4.

10. (A)

- 11. (A)
- 12. (A)
- 13.
- 14.
- (C)
- 15. (A)

- 16. (A)
- 17.
- (A)
- 18.
- (D) (A)

(A)

- 19. (B)
- 20. (A)

- 21. (B)
- 22.
- (A)
- 23.
- (D)
- 24. (C)
- 25. (B)

- 26. (B)
- 27.
- (A)
- 28. (D)
- 29. (D)
- 30. (B)

- 31.
- (B) (D)
- 32. 37.
- (B) (C)
- 33. 38.
- (B) (B)
- 34. 39.
- 35. (C)

40.

55.

- 36. 41.
- (C)
- 42.
- (C)
- 43.
- (D)
- 44. (C)
- 45. (A)

(C)

(A)

- 46.
- (C)

(ABCD)

- 47.
- (B)

(ABC)

- 48.
- (B)

(ABD)

- 49. (AC)
- **50**. (BD)

- 51. 56.
- **52.**
- (A)
- 53.
- 54.

- (B)
- 57.
- 58.
- (C)
- 59.

- 60.
- (A) (p,r); (B) (q,r); (C) (q,s); (D) (q,r)

- (D)

SOLUTIONS OF INTRODUCTION TO CHEMISTRY

EXERCISE

PART - I

1. 10¹⁰ grains are distributed in 1 second

$$\therefore 6.02 \times 10^{23} \text{ grains are distributed in } \frac{6.02 \times 10^{23}}{10^{10}} \text{ sec} = \frac{6.02 \times 10^{23}}{10^{10} \times 60 \times 60 \times 24 \times 365} \text{ years}$$

$$= 1.9 \times 10^6 \text{ years (approx.)}$$

2. No. of atoms = mole \times Na

1 =
$$\frac{x}{238} \times N_a$$
 (x is wt. of uranium)
x = $\frac{238}{6} \times 10^{-23}$
x = 3.95 × 10⁻²²

3. No. of moles of C = $\frac{12.044 \times 10^{23}}{6.022 \times 10^{23}} = 2$. Wt. of C atoms = 2 × 12 = 24 g.

4. mass of Si = mole × Atomic mass = $35 \times 28 = 980 \text{ g}$

1 litre Hg metal

9.

8. We know that, 1 amu = $\frac{1}{12}$ × weight of one ¹²C atom or weight of one ¹²C atom = 12 amu (at. wt. of C = 12 amu). Similarly, as the atomic weight of He is 4 amu, weight of one He atom = 4 amu.

Thus, the number of atoms in 100 amu of He = $\frac{100}{4}$ = 25.

volume = 1000

$$d = \frac{m}{v}$$
mass = d x V = 13.6 x 1000
No of mole of Hg metal = $\frac{13.6 \times 1000}{200}$ = 68 mole

10. Fractional abundance of $^{35}CI = 0.75$, Molar mass = 35.0 Fractional abundance of $^{37}CI = 0.25$, Molar mass = 37.0 \therefore Average atomic mass = (0.75) (35.0 amu) + (0.25) (37.0 amu) = 35.5

11. Let mole % of ${}^{26}\text{Mg be x.}$ $\therefore \frac{(21-x)25+x(26)+79(24)}{100}=24.31$ x=10%

12. No. of molecules = mole \times N_a = $\frac{16}{16}$ \times N_a N_a = 6.02 \times 10²³

13. In 18 g, no. of molecules = N_A

so in 0.09 g no. of molecules =
$$\frac{N_A}{18} \times 0.09 = \frac{N_A}{2 \times 100} = 3.01 \times 10^{21}$$
.

14. Let the number of C₂H₆ molecules in the sample be n. As given, mass of C₂H₆ = mass of 10⁷ molecules of CH₄

$$\frac{n}{\text{Av.constant}} \times \text{mol. wt. of } C_2H_6 = \frac{10^7}{\text{Av.constant}} \times \text{mol. wt. of } CH_4$$

$$\frac{n \times 30}{\text{Av.constant}} = \frac{10^7 \times 16}{\text{Av.constant}} = 5.34 \times 10^6.$$

No. of moles of CaCO₃ = $\frac{\text{no. of molecules}}{\text{Av. cons.}} = \frac{6.022 \times 10^{23}}{6.022 \times 10^{23}} = 1$ 16.

Weight of $CaCO_3 = 1 \times 100 = 100 g$

Total no. of moles of $CO_2 = \frac{\text{wt. in g}}{\text{mol. wt.}} = \frac{0.2}{44} = 0.00454$. 17.

No. of moles removed = $\frac{10^{21}}{6.022 \times 10^{23}} = 0.00166$.

No. of moles of CO_2 left = 0.00454 - 0.00166 = 0.00288.

(a) mole of $H_2SO_4 = \frac{mass}{molar \ mass} = \frac{196}{98} = 2$. 18.

> 1 molecule H₂SO₄ contains 2 atom hydrogen, 1 atom sulphur and 4 atom of oxygen. Hence, $H = 4N_A$ atoms, $S = 2N_A$ atoms, $O = 8N_A$ atoms

(b) molecule of
$$H_2SO_4 = \frac{196}{98} = 2$$
.

Hence, H = 4 atoms, S = 2 atoms, O = 8 atoms.

(c) 5 mole H₂S₂O₈ contains

 $H = 10N_A$ atoms, $S = 10N_A$ atoms, O = 40 N_A atoms

(d) 3 molecules H₂S₂O₆ contains

H = 6 atoms, S = 6 atoms, O = 18 atoms.

10 mole NH₃ have mole of 'H' atom = 10 x 3 19. 5 mole of H₂SO₄ have mole of 'H' atom = 10 Total mole of 'H' atom = 40 mole of $H_2 = 20$

Hence: number of H₂ molecules = 20N_A

- 20. no. of atoms = $3 \times 11 \times N_A$ So no. of O_3 molecules formed = 11 N_A
- Mol. wt. of air = $\frac{78 \times 28 + 21 \times 32 + 0.9 \times 40 + 0.1 \times 44}{78 + 21 + 0.9 + 0.1} = 28.964.$ 21. $(N_2 = 28, O_2 = 32, Ar = 40 \text{ and } CO_2 = 44)$
- From ideal gas equation, pV = nRT. In SI sytem the parameters of the gas are: 22. Pressure = $p \times 1000$ (Pa); Volume = $V \times 10^{-6} \text{ (m}^3)$; Temperature = t + 273 (K); moles = w/32Therefore, R = $\frac{32\text{pV}}{1000 \times \text{w} \times (\text{t} + 273)}$
- 23. $PV = nRT, N = n \times N_A$

- **24.** PV = nRT, n = W/M 16 AMU
- 25. Pressure = 7.6×10^{-10} mm = 0.76×10^{-10} cm $\frac{0.76 \times 10^{-10}}{76} = \text{atm (1 atom} = 76 \text{ cm)} = 10^{-12} \text{ atm.}$

Volume = 1 litre, R = 0.0821 lit. atm/K/mole, temperature = 273 K.

We know that pV = nRT or n =
$$\frac{pV}{RT}$$

$$n = \frac{10^{-12} \times 1}{0.082 \times 273} \ = 0.44 \times 10^{-13} \; .$$

No. of molecules = = $0.44 \times 10^{-13} \times 6.022 \times 10^{23} = 2.65 \times 10^{10}$.

PART - II

- **1.** Atoms of an element are alike.
- 4. mole = $\frac{\text{mass}}{\text{at. wt.}} = \frac{46}{23} = 2 \text{ mole.}$
- 6. $4 \text{ g He} = N_A \text{ atoms}$
- 7. A B
 Atomic mass 40 80
 given weight x gram 2x gram
 No. of mole $\frac{x}{40}$ $\frac{2x}{80}$ No. of Atom $\frac{x}{40} \times N_A$ $\frac{x}{40} \times N_A$

But according to question = $\frac{x}{40} \times N_A = y$

8. Mole of Aluminium = $\frac{54}{27}$ = 2 mole.

Al and Mg have same number of atoms (given). Hence same moles also.

- \therefore Mass of magnesium = 2 × 24 = 48 g.
- 9. $558.5 \text{ g Fe} = \frac{558.5}{55.85} \text{ mole Fe} = 10 \text{ mole Fe} = 2 \times 5 \text{ mole C} = 2 \times \frac{60}{12} \text{ mole C}$
- 11. 12 g ${}_{6}C^{12}$ contains $6N_A$ electrons and $6N_A$ neutrons.
- 12. $M_X = 2 \times 12 = 24$ $M_Y = \frac{M_X}{0.3} = 80.$
- 13. 1 gram ion = 1 mole charge on 1 mole Al³⁺ is = $3 \times e$ (N_A).
- 14. Number of protons in ${}_{6}C^{14}=6$; Number of neutrons in ${}_{6}C^{14}=8$; As per given new atomic mass of ${}_{6}C^{14}=12+4=16$

(As the mass of electron negligible as compared to neutron and proton)

% increase in mass =
$$\frac{16-14}{14} \times 100 = 14.28$$

15. Weight of C –14 isotope in 12g sample =
$$\frac{2 \times 12}{100}$$

No. of isotopes =
$$\frac{2 \times 12 \times N}{100 \times 14}$$
 = 1.032 × 10²² atom

17.
$$114.8 = 115 \times 0.95 + M \times 0.05$$

M = 111

19.
$$17 \text{ g NH}_3 = N_A \text{ molecules}$$

21. Gram mol. wt. of
$$C_{60}H_{22} = 742$$
 gm i.e. wt. of 6.023×10^{23} molecules = 742 so wt. of 1 molecules = $\frac{742}{6.023 \times 10^{23}} = 1.24 \times 10^{-21}$ g.

22. Number of electrons =
$$\frac{1.8 \times 10}{18} \times N_A$$

23. 1 mole
$$P_4 = N$$
 molecules of $P_4 = 4$ N atoms of P_4 .

24. In
$$(NH_4)_3PO_4$$

$$\frac{\text{mole of Hatom}}{\text{mole of O atom}} = \frac{12}{4}$$

$$\text{mole of 'O' atom} = \frac{4}{12} \quad (\text{mole of H atom}) = \frac{1}{3} (3.18) = 1.06.$$

28.
$$\frac{F-32}{9} = \frac{C}{5}$$
Let temperature be t, same on two scale
$$\therefore t - 32 = \frac{9t}{5} \text{ or } t = -40$$

30.
$$R = 2 \text{ can } K^{-1} \text{ mol}^{-1} = 8.314 \text{ JK}^{-1} \text{ mol}^{-1} = 8.314 \times 10^7 \text{ erg } K^{-1} \text{ mol}^{-1} = 0.0821 \text{ litre atm } K^{-1} \text{ mol}^{-1}.$$

31. Follow answer 1 in SI units.

33.
$$P \times 44.8 = 2 \times 0.0821 \times 540.$$
 \therefore $P = 1.98$ atm.

34. Molar volume, i.e. volume when n = 1 from PV = nRT is RT/P.

37.		H_2	:	He	:	O_2	:	О3
	Ratio of total no. of molecules =	1	:	1	:	1	:	1
	So ratio of total no. of atoms =	2	:	1	:	2	:	3

38. Statement of avogadro's hypothesis.

39. Mol. wt. of gas is =
$$\frac{16 \times 22.4}{5.6}$$
 = 64 g
32 + 16x = 64
x = 2

40.
$$\frac{\text{wt. of 1 litre gas at STP}}{\text{wt of 1 litre O}_2 \text{ at STP}} = \frac{\text{molar mass of gas}}{\text{molar mass of O}_2}$$
$$2.22 = \frac{\text{M}}{32}$$
$$\text{M} = 71.$$

43. 9.108 × 10⁻²¹ kg is the wt. of 1 e⁻ =
$$\frac{1}{N_A}$$
 moles of e⁻

So 1 kg is the wt. of 1 e⁻ =
$$\frac{1}{9.108 \times 10^{-31}} \times \frac{1}{N_A} = \frac{1}{9.108 \times 10^{-31} \times 6.023 \times 10^{23}} = \frac{10^8}{9.108 \times 6.023}$$
.

44. 560g of Fe No. of moles =
$$\frac{560 \,\text{g}}{56 \,\text{g}}$$
 = 10 mole

$$70g = 5$$
 moles of N

20g H = 20 moles of H-atoms.

45. (A) Moles of
$$C = 24/12 = 2$$
, So no. of atoms = $2N_A$

(B) Moles of Fe =
$$56/56 = 1$$
, So no. of atoms = N_A

(C) Moles of AI =
$$27/27 = 1$$
, So no. of atoms = N_A

(D) Moles of Fe =
$$108/108 = 1$$
, So no. of atoms = N_A

Hence, 0.25 moles of O-atom =
$$\frac{1}{8} \times 0.25 = 3.125 \times 10^{-2}$$
 mole Mg₃(PO₄)₂.

48.
$$^{54}\text{Fe} \longrightarrow 5\%$$

Av. atomic mass =
$$x_1A_1 + x_2A_2 + x_3A_3 = 54 \times 0.05 + 56 \times 0.9 + 57 \times 0.05 = 55.95$$

51. Number of electron = mole of H
$$\times$$
 1 = Mole of O \times 8 = Mole of C \times 6 = Mole of N \times 7

60. Use % by moles =
$$\frac{M_{avg} - M_1}{M_2 - M_1} \times 100$$

% by mass = % by moles
$$\times \frac{M_2}{M_{avg}}$$